Given an integer x, find it’s square root. If x is not a perfect square, then return floor(√x).
Examples :
Input: x = 4 Output: 2 Explanation: The square root of 4 is 2. Input: x = 11 Output: 3 Explanation: The square root of 11 lies in between 3 and 4 so floor of the square root is 3.
There can be many ways to solve this problem. For example Babylonian Method is one way.
Simple Approach: To find the floor of the square root, try with all-natural numbers starting from 1. Continue incrementing the number until the square of that number is greater than the given number.
- Algorithm:
- Create a variable (counter) and take care of some base cases, i.e when the given number is 0 or 1.
- Run a loop until , where n is the given number. Increment i by 1.
- The floor of the square root of the number is
- Implementation:
C++
#includevàlt;bits/stdc++.hvàgt;
using
namespace
std;
int
floorSqrt(
int
x)
{
if
(x == 0 || x == 1)
return
x;
int
i = 1, result = 1;
while
(result <= x)
{
i++;
result = i * i;
}
return
i - 1;
}
int
main()
{
int
x = 11;
cout << floorSqrt(x) << endl;
return
0;
}
Java
class
GFG {
static
int
floorSqrt(
int
x)
{
if
(x ==
|| x ==
1
)
return
x;
int
i =
1
, result =
1
;
while
(result <= x) {
i++;
result = i * i;
}
return
i -
1
;
}
public
static
void
main(String[] args)
{
int
x =
11
;
System.out.print(floorSqrt(x));
}
}
Python3
def
floorSqrt(x):
if
(x
=
=
or
x
=
=
1
):
return
x
i
=
1
; result
=
1
while
(result <
=
x):
i
+
=
1
result
=
i
*
i
return
i
-
1
x
=
11
print
(floorSqrt(x))
C#
using
System;
class
GFG
{
static
int
floorSqrt(
int
x)
{
if
(x == 0 || x == 1)
return
x;
int
i = 1, result = 1;
while
(result <= x)
{
i++;
result = i * i;
}
return
i - 1;
}
static
public
void
Main ()
{
int
x = 11;
Console.WriteLine(floorSqrt(x));
}
}
PHP
<?php
function
floorSqrt(
$x
)
{
if
(
$x
== 0 ||
$x
== 1)
return
$x
;
$i
= 1;
$result
= 1;
while
(
$result
<=
$x
)
{
$i
++;
$result
=
$i
*
$i
;
}
return
$i
- 1;
}
$x
= 11;
echo
floorSqrt(
$x
),
"n"
;
?>
Javascript
<scriptvàgt;
function
floorSqrt(x)
{
if
(x == 0 || x == 1)
return
x;
let i = 1;
let result = 1;
while
(result <= x)
{
i++;
result = i * i;
}
return
i - 1;
}
let x = 11;
document.write(floorSqrt(x));
</scriptvàgt;
Output :
3
- Complexity Analysis:
- Time Complexity: O(√ n).
Only one traversal of the solution is needed, so the time complexity is O(√ n). - Space Complexity: O(1).
Constant extra space is needed.
- Time Complexity: O(√ n).
Better Approach: The idea is to find the largest integer whose square is less than or equal to the given number. The idea is to use Binary Search to solve the problem. The values of i * i is monotonically increasing, so the problem can be solved using binary search.
- Algorithm:
- Take care of some base cases, i.e when the given number is 0 or 1.
- Create some variables, lowerbound , upperbound , where n is the given number, and to store the answer.
- Run a loop until , the search space vanishes
- Test if the square of mid () is less than or equal to n, If yes then search for a larger value in second half of search space, i.e l = mid + 1, cập nhật ans = mid
- Else if the square of mid is more than n then search for a smaller value in first half of search space, i.e r = mid – 1
- Print the value of answer ( )
- Implementation:
C++
#include <iostreamvàgt;
using
namespace
std;
int
floorSqrt(
int
x)
{
if
(x == 0 || x == 1)
return
x;
int
start = 1, end = x/2, ans;
while
(start <= end) {
int
mid = (start + end) / 2;
int
sqr = mid * mid;
if
(sqr == x)
return
mid;
if
(sqr <= x) {
start = mid + 1;
ans = mid;
}
else
end = mid - 1;
}
return
ans;
}
int
main()
{
int
x = 20221;
cout << floorSqrt(x) << endl;
return
0;
}
Java
public
class
Check
{
public
static
int
floorSqrt(
int
x)
{
if
(x ==
|| x ==
1
)
return
x;
long
start =
1
, end = x, ans=
;
while
(start <= end)
{
int
mid = (start + end) /
2
;
if
(mid*mid == x)
return
(
int
)mid;
if
(mid*mid < x)
{
start = mid +
1
;
ans = mid;
}
else
end = mid-
1
;
}
return
(
int
)ans;
}
public
static
void
main(String args[])
{
int
x =
11
;
System.out.println(floorSqrt(x));
}
}
Python3
def
floorSqrt(x) :
if
(x
=
=
or
x
=
=
1
) :
return
x
start
=
1
end
=
x
while
(start <
=
end) :
mid
=
(start
+
end)
/
/
2
if
(mid
*
mid
=
=
x) :
return
mid
if
(mid
*
mid < x) :
start
=
mid
+
1
ans
=
mid
else
:
end
=
mid
-
1
return
ans
x
=
11
print
(floorSqrt(x))
C#
using
System;
class
GFG
{
public
static
int
floorSqrt(
int
x)
{
if
(x == 0 || x == 1)
return
x;
int
start = 1, end = x, ans = 0;
while
(start <= end)
{
int
mid = (start + end) / 2;
if
(mid * mid == x)
return
mid;
if
(mid * mid < x)
{
start = mid + 1;
ans = mid;
}
else
end = mid-1;
}
return
ans;
}
static
public
void
Main ()
{
int
x = 11;
Console.WriteLine(floorSqrt(x));
}
}
PHP
<?php
function
floorSqrt(
$x
)
{
if
(
$x
== 0 ||
$x
== 1)
return
$x
;
$start
= 1;
$end
=
$x
;
$ans
;
while
(
$start
<=
$end
)
{
$mid
= (
$start
+
$end
) / 2;
if
(
$mid
*
$mid
==
$x
)
return
$mid
;
if
(
$mid
*
$mid
<
$x
)
{
$start
=
$mid
+ 1;
$ans
=
$mid
;
}
else
$end
=
$mid
-1;
}
return
$ans
;
}
$x
= 11;
echo
floorSqrt(
$x
),
"n"
;
?>
Javascript
<scriptvàgt;
function
floorSqrt(x)
{
if
(x == 0 || x == 1)
return
x;
let start = 1;
let end = x;
let ans;
while
(start <= end)
{
let mid = (start + end) / 2;
if
(mid * mid == x)
return
mid;
if
(mid * mid < x)
{
start = mid + 1;
ans = mid;
}
else
end = mid-1;
}
return
ans;
}
let x = 11;
document.write(floorSqrt(x) +
"<br>"
);
</scriptvàgt;
Output :
142
- Complexity Analysis:
- Time complexity: O(log n).
The time complexity of binary search is O(log n). - Space Complexity: O(1).
Constant extra space is needed.
- Time complexity: O(log n).
Thanks to Gaurav Ahirwar for suggesting above method.
chú ý: The Binary Search can be further optimized to start with ‘start’ = 0 and ‘end’ = x/2. Floor of square root of x cannot be more than x/2 when x > 1.
Thanks to vinit for suggesting above optimization.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready. To complete your preparation from learning a language to DS Algo and many more, please refer Complete Interview Preparation Course.
In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.
My Personal Notes